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Abstract

For the time integration of edge finite element discretizations of the three-dimensional Maxwell equations, we consider
the Gautschi cosine scheme where the action of the matrix function is approximated by a Krylov subspace method. First,
for the space-discretized edge finite element Maxwell equations, the dispersion error of this scheme is analyzed in detail and
compared to that of two conventional schemes. Second, we show that the scheme can be implemented in such a way that a
higher accuracy can be achieved within less computational time (as compared to other implicit schemes). We also analyzed
the error made in the Krylov subspace matrix function evaluations. Although the new scheme is unconditionally stable, it
is explicit in structure: as an explicit scheme, it requires only the solution of linear systems with the mass matrix.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper deals with the numerical solution of the time dependent Maxwell equations. In particular, we
are interested in time integration of the three-dimensional Maxwell equations discretized in space by Nedelec’s
edge finite elements [28,29]. Nedelec’s edge and face elements have a number of attractive properties (as e.g.
automatic satisfaction of the proper continuity requirements across the boundaries between different materi-
als) and are a standard tool in the numerical treatment of the Maxwell equations [25]. We emphasize, however,
that the time integration techniques presented in this paper are applicable to any space-discretized second
order wave equation(s).
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Many time stepping schemes exist for the time integration of the space-discretized Maxwell equations
[41,12,24,22,23,5,19,20]. Often the time step in these schemes is restricted either due to stability restrictions
or accuracy requirements, e.g. to resolve the waves. In practice, however, one often would like to have a step
size free from stability restrictions since on nonuniform finite element meshes or in inhomogeneous media this
restriction can be much more stringent than the wave resolution requirements. The need for better stability
motivated the creation of a number of unconditionally stable schemes which proved successful in the finite
element framework [12,24]. Stable time stepping schemes for the Maxwell equations have been also of impor-
tance in connection with finite difference spatial discretizations [22,23,5,19,20]. A scheme proposed by Gaut-
schi [11] has recently received attention in the literature for the solution of second order highly oscillatory
ODEs [18,17,15]. This scheme contains a matrix function, is exact for linear equations with constant inhomo-
geneity and thus unconditionally stable. In each time step the product of a matrix function with a given vector
can be computed by Krylov subspace methods [37,6,21,32,7,16,8,18,36]. The time error of the scheme is of
second order uniformly in the frequencies [17] and this allows to choose time steps larger than the smallest
wave length.

In this paper we show that, using Krylov subspace techniques, the Gautschi cosine scheme can be effi-
ciently implemented for the three-dimensional Maxwell equations discretized in space by edge elements.
This yields a Gautschi–Krylov cosine scheme which proves to be very competitive, in terms of accuracy
and CPU time, as compared to other implicit time-stable schemes for the time integration of the Maxwell
equations.

Several authors study the dispersion properties of the discretized Maxwell equations. For the two-
dimensional Maxwell equations discretized with the first order edge finite elements, Monk and Parrot com-
pare dispersion properties of several conventional schemes [26]. A thorough analysis for three-dimensional
problems with different boundary conditions on an unstructured tetrahedral mesh is carried out in [27].
For the dispersive properties of the higher order edge elements we refer to the paper of Ainsworth [1].
Dispersion properties of several high order time integration schemes for transient wave equations are con-
sidered by Cohen in [4]. In this paper the attractive properties of the new scheme are confirmed by a dis-
persion analysis done for the first order edge finite elements. For comparison purposes, the dispersion
analysis is also presented for two other schemes, the conventional time-explicit leap frog scheme and an
unconditionally stable scheme of Lee, Lee and Cangellaris often referred to as the Newmark b-scheme
(in the sequel, the LLC scheme) [12,24].

To achieve high computational efficiency, it is crucial for the new Gautschi–Krylov scheme to properly
choose the Krylov subspace dimension every time the action of the matrix function is computed. We propose
a new simple strategy for controlling the Krylov subspace dimension.

The paper is organized as follows: Section 2 presents the Maxwell equations and their weak formulation, in
Section 3 the Gautschi cosine scheme and two other time stepping schemes are described, the Krylov subspace
error in the Gautschi–Krylov scheme and the stability of the scheme are analyzed in Section 4, and dispersion
errors of the three schemes are investigated in Section 5. Finally, in the last section we demonstrate numerical
results of a comparison of the schemes.
2. Maxwell equations

Consider the time-dependent Maxwell equations on a bounded lossless domain X � R3:
otDs ¼ r�H s � J s; ð2:1Þ
otBs ¼ �r� Es; ð2:2Þ
r �Ds ¼ qs; ð2:3Þ
r � Bs ¼ 0; ð2:4Þ
where Es and Hs (Ds and Bs) are electric and magnetic fields (respectively, the electric and the magnetic flux
densities). Furthermore, Js and qs denote, respectively, the electric current and charge density (the latter is a
space and time dependent function). The subscript s indicates that the SI units are used. Assume that the fol-
lowing boundary and initial conditions are given:
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ðn� EsÞjC ¼ 0; ð2:5Þ
Esjts¼0 ¼ �E0; H sjts¼0 ¼ �H0; ð2:6Þ
where n is the outward normal vector to the domain boundary C = oX. The following constitutive relations
hold:
Ds ¼ �Es; Bs ¼ lH s; ð2:7Þ

where the dielectric permittivity � (=�0�r) and the magnetic permeability l (=l0lr) are assumed to be space
dependent tensors. The free space dielectric permittivity and magnetic permeability are defined by �0 and
l0, respectively. The dimensionless tensors �r and lr are material dependent and called relative permittivity
and relative permeability, respectively.
2.1. Dimensionless Maxwell equations

To avoid problems with floating point arithmetic when working with very large numbers, we apply the fol-
lowing space and time scaling:
x ¼ xs

L
; t ¼ c0

L
ts; ð2:8Þ
where L is a reference length (expressed in meters), and c0 = (�0l0)�1/2 � 3 · 108 m/s is the speed of light in
vacuum. The scaling for ys and zs is done similarly to xs. Furthermore, we normalize the fields as
Esðxs; tsÞ ¼
~H 0

Z�1
0

Eðx; tÞ; H sðxs; tsÞ ¼ ~H 0Hðx; tÞ; J sðxs; tsÞ ¼
~H 0

L
Jðx; tÞ; ð2:9Þ
where xs = (xs, ys, zs), x = (x, y, z), Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
l0=�0

p
[Ohm] is the free space intrinsic impedance, and ~H 0 is a ref-

erence magnetic field strength [A/m]. Eqs. (2.1), (2.2) and constitutive relations (2.7) written for the scaled
quantities yield the following dimensionless Maxwell equations:
�rotE ¼ r�H � J; ð2:10Þ
lrotH ¼ �r� E. ð2:11Þ
Since the given boundary conditions are homogeneous, the dimensionless normalization leaves them
unchanged.

By differentiating (2.10) in time and taking curl of (2.11), we eliminate H from the system (2.10), (2.11) and
obtain a second-order hyperbolic partial differential equation for E,
�rottE þr� ðl�1
r r� EÞ ¼ �otJ. ð2:12Þ
Using (2.10) we obtain the initial condition for the derivative of E:
otEðx; 0Þ ¼ ��1
r ð�Jðx; 0Þ þ r �Hðx; 0ÞÞ. ð2:13Þ
2.2. Weak formulation and finite element discretization

Defining the space
H 0ðcurl;XÞ ¼ fu 2 L2ðXÞ3jr � u 2 L2ðXÞ3; ðn� uÞjC ¼ 0g;

we arrive at the following Galerkin weak formulation of (2.12):
Find E 2 H0(curl, X) such that "w 2 H0(curl, X),
ottð�rE;wÞ þ ðl�1
r r� E;r� wÞ ¼ �ðotJ ;wÞ. ð2:14Þ
Next, we introduce a tessellation of X (a hexahedral or tetrahedral mesh) with N internal edges and denote by
Wh the space of Nedelec’s first order edge basis functions:
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W h ¼ spanfwjðxÞ jall internal edges j ¼ 1; . . . ;Ng;

where each basis function wj(x) is defined with respect to the edge j as a linear polynomial such that
[28,25]:
aiðwjÞ �
Z

edge i
wj � ti da ¼

0 if i 6¼ j;

1 if i ¼ j;

�

where ai(wj) are the degrees of freedom associated with the edges and ti is the unit tangent vector along the
edge i. The electric field E is then approximated as
E � Eh ¼
XN

j¼1

ejðtÞwj.
The discretized version of (2.14) then reads:
Find Eh 2Wh, such that "W 2Wh,
ottð�rEh;WÞ þ ðl�1
r r� Eh;r�WÞ ¼ �ðotJ;WÞ. ð2:15Þ
Denoting by e(t) a vector function with the entries ej(t), we can write (2.15) in a matrix form as a system of
ordinary differential equations (ODEs)
M �e
00 þ Ale ¼ jðtÞ ð2:16Þ
with
ðM �Þij ¼ ð�rwi;wjÞ; ðjðtÞÞi ¼ �ðotJ;wiÞ; ðAlÞij ¼ ðl�1
r r� wi;r� wjÞ. ð2:17Þ
3. Time stepping schemes

In this section the Gautschi cosine time-stepping scheme is presented, along with two other conventional
time-stepping schemes which we use for comparison with the Gautschi scheme. The first of the two schemes
is the explicit staggered leap frog scheme and the second one is an implicit scheme designed for finite element
discretizations of the Maxwell equations [24,12].

3.1. Leap frog scheme

The two-step staggered leap frog scheme for the semidiscrete Maxwell equations (2.16) reads
M �

enþ1 � 2en þ en�1

s2
þ Alen ¼ jn; ð3:1Þ
where s is the time step size and the superscripts refer to the time levels tn = ns. The scheme can be written in
the form
M �e
nþ1 þ ðs2Al � 2M �Þen þM �e

n�1 ¼ s2jn. ð3:2Þ

If the matrices M� and Al are Hermitian, M� is positive definite and Al is positive semidefinite then the leap
frog scheme is stable for
s2
6

4

kmax

;

where kmax is the maximum eigenvalue of the matrix M�1
� Al (see Appendix A).

The computational work of the scheme per time step mainly consists of one matrix–vector multiplication
with the matrix M�1

� Al. This can be efficiently done with the help of a sparse LU factorization of M� (see
Remark 3.2.1 in Section 3.2.1).
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3.2. Gautschi cosine scheme

3.2.1. Reduction of the semidiscrete Maxwell equations to the normal form

We first transform the ODE system (2.16) into the form
y00 þ ~A�;ly ¼ f ðtÞ; ð3:3Þ

which we call the normal form. Computing a sparse LU factorization of M� (see Remark 3.2.1), we obtain
M � ¼ L�U �.
Note that if � is a symmetric positive definite tensor then the matrix M� is symmetric positive definite, too, and
we can take U � ¼ LT

� (Cholesky factorization).
It is easy to see that the semidiscrete Maxwell equations (2.16) can be transformed to the form (3.3) with

~A�;l and y defined in one of the following ways:
~A�;l ¼ U�1
� L�1

� Al; y ¼ e; f ¼ U�1
� L�1

� j; ð3:4Þ
~A�;l ¼ L�1

� AlU�1
� ; y ¼ U �e; f ¼ L�1

� j; ð3:5Þ
~A�;l ¼ AlU�1

� L�1
� ; y ¼ L�U �e; f ¼ j; ð3:6Þ
where the inverse matrices will normally never be computed explicitly (see Remark 3.2.1). Since we call (3.3)
the normal form of (2.16), the transformations (3.4)–(3.6) can, respectively, be called the left, two-sided and
right normalizations.

Remark 3.2.1. For the used edge finite element discretization a sparse LU (or Cholesky) factorization of the
mass matrix can usually be efficiently computed even on fine meshes (at least, if the mesh is not too distorted
[31] which is a general requirement for edge finite elements). In practice, matrices L�1

� and U�1
� will usually not

be computed explicitly. This would be expensive because the inverses will not be sparse in general. In fact, we
will only need to compute the action of the matrices L�1

� and U�1
� on a given vector and this can be done by

solving a linear system with L� or U�, as is usually done in preconditioning (see e.g. Chapter 13.1 in [38] or
Chapter 3.1 in [2]).

Note that the sparse LU factorization of the mass matrix is also required for explicit schemes. The
factorization is performed only once for the complete time integration.
3.3. Formulation of Gautschi cosine scheme

We formulate the Gautschi cosine time stepping scheme [11,17] for an ODE system in the normal form
(3.3):
ynþ1 � 2yn þ yn�1 ¼ s2wðs2~A�;lÞð�~A�;lyn þ f nÞ; ð3:7Þ

where the function w is given by
wðx2Þ ¼ 2
1� cos x

x2
. ð3:8Þ
For a derivation of the scheme we refer to [17].

3.3.1. Computation of w(s2~A�;l)v
Since the matrix ~A�;l is large and sparse, computation of wðs2~A�;lÞv by conventional methods (see e.g. [14],

Chapter 11) is hardly feasible. However, the action of the matrix function w on a given vector at each time step
can be efficiently computed by a Krylov subspace method. Algorithms for this have been developed and used
in different contexts (we list in the chronological order [37,6,21,32,7,16,8,18], see also Chapter 11 in the recent
book [38]).

Throughout this subsection we denote A ¼ s2~A�;l;A 2 RN�N . Computation of w(A)v for a given vector v is
based on the Arnoldi or, when A = A*, on the Lanczos process (see e.g. [38,33]). The Lanczos process involves
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the three-term recurrences and is therefore cheaper, especially for large Krylov subspace dimensions m. Since
in this case m is not too large we use the Arnoldi process which has better numerical stability properties.

Starting with A and v, the Arnoldi process generates after m steps orthonormal vectors v1, v2, . . . , vm+1

(with v1 = v/ivi) and a Hessenberg matrix �Hm 2 Rðmþ1Þ�m such that (see [38,33])
AV m ¼ V mþ1
�H m; ð3:9Þ
where V mþ1 2 RN�ðmþ1Þ is a matrix with column vectors v1, v2, . . . , vm+1 (and, correspondingly, Vm is Vm+1

with the last column skipped). Denote by Hm a matrix obtained from �Hm by deleting its last row. We
have
AV m � V mHm; ð3:10Þ

where the approximation improves as m grows. Krylov subspace approximations to w(A)v are based on the
last relation: since in the Arnoldi process by construction v1 = v/ivi we have
v ¼ V my; y ¼ kvke1;
with e1 being the first canonical basis vector in Rm, and (cf. (3.10))
wðAÞV my � V mwðH mÞy; y ¼ kvke1;
so that the action of the matrix function on the given vector v is computed as
wðAÞv � kvkV mwðHmÞe1. ð3:11Þ
We emphasize that dependence of the orthonormal basis v1, v2, . . . , vm on v is crucial to have a good approx-
imation in (3.11).

In practice m is small (say 20), so that w(Hm) in (3.11) can easily be computed by a standard method (see
e.g. Chapter 11 in [14] and references therein). In the experiments presented in this paper, w(Hm) was com-
puted with Matlab’s built-in functions sqrtm and funm.

An important question is when to stop the Arnoldi process. One stopping criterion is proposed in [18] and is
based on controlling a norm of a generalized residual. Unfortunately, in our experiments this approach
appeared to be very sensitive to the given tolerance which had to be tuned for every test problem. For this
reason we use another simple strategy: the Arnoldi process was stopped as soon as
ynþ1
ðmÞ � ynþ1

ðm�1Þ

ynþ1
ðmÞ � ynþ1

ð0Þ

�����
�����
1

6 TOL ; ð3:12Þ
where ynþ1
ðmÞ is the numerical solution of the scheme (3.7) obtained with m steps of the Arnoldi process, the divi-

sion of the vectors is understood elementwise and TOL is a tolerance (in all our experiments we used the value
TOL = 10�2, this value should be chosen according to the relative accuracy required for a specific problem). By
ynþ1
ð0Þ we denote the solution obtained by (3.7) with wðs2~A�;lÞ set to the identity matrix (so that no Arnoldi steps

are done). Note that ynþ1
ð0Þ coincides with the solution of the leap frog scheme (cf. (3.1)) and, thus, is a second

order time-consistent numerical solution. Stopping criterion (3.12) means that the further increase of the Kry-
lov subspace dimension m leads to no further improvement in the accuracy as compared to the accuracy al-
ready obtained with respect to the leap frog solution ynþ1

ð0Þ . Note that this stopping criterion can be shown to be
a controller of the Krylov subspace error (see Section 4.2).

The described steps lead to the algorithm for the Gautschi–Krylov time integration scheme presented in
Fig. 1. The analysis of the Krylov subspace error made in the matrix function evaluations and the stability
of the new scheme are presented in Section 4.

Since the work to compute the matrix function of the small matrix Hm is negligible, the overall computa-
tional work of the Gautschi scheme per time step is dominated by m + 1 matrix–vector multiplications with
the matrix ~A�;l (m of which are required by the Arnoldi process). This means an increase by a factor of m + 1
as compared to the work per time step in the leap frog scheme.



Fig. 1. The Gautschi scheme with the Krylov subspace matrix function evaluation and adaptive choice of the Krylov dimension.
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3.4. LLC scheme

The following scheme proposed by J.-F. Lee, R. Lee, and A. Cangellaris (the LLC scheme [24,12]) can be
applied directly to the semidiscrete Maxwell equations (2.16):
M �

enþ1 � 2en þ en�1

s2
þ Al

1

4
en�1 þ 1

2
en þ 1

4
enþ1

� �
¼ jn. ð3:13Þ
This scheme can be written in the form
M � þ
s2

4
Al

� �
enþ1 ¼ s2jn � s2

2
Al � 2M �

� �
en � M � þ

s2

4
Al

� �
en�1; ð3:14Þ
revealing that a linear system with matrix M � þ s2

4
Al has to be solved at every time step. For discretizations

obtained on relatively coarse grids this can be done by a sparse direct solver, by computing the LU factoriza-
tion once and reusing it at every time step. If a direct solution is not feasible, a preconditioned Krylov iterative
solver can be used.

The LLC scheme is unconditionally (regardless of the time step s) stable [24].

3.5. One-step formulations of the three schemes

Each of the three schemes described in this section is a two-step scheme (i.e. it requires numerical solutions
on both n and n � 1 time levels to get the next time level solution) but can be written in a one-step form. This is
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normally done by introducing an auxiliary time derivative variable. These one-step formulations can be used
at the first time step where the two-step formulation would have required the normally unknown value of e�1.

In the context of the Maxwell equations, a natural way to obtain a one-step formulation of a time integra-
tion scheme is to consider the Maxwell equations as the two first order equations. A possible drawback of this
approach is that one has to work with both fields and, hence, build up appropriate spatial discretizations for
each of the fields. Thus, one of the benefits of treating the Maxwell equations as a second order equation for
one of the fields is then lost.

In this section we give the one-step formulations for all schemes. We derive it for the LLC scheme. The
other two one-step formulations can be obtained in a similar way. The formulations are given for an auxiliary
variable but directly applicable to the two first order Maxwell equations, too. Introducing the time-derivative
auxiliary variable as
unþ1=2 ¼ enþ1 � en

s
; ð3:15Þ
we can write (3.13) as
M �

unþ1=2 � un�1=2

s
þ 1

2
Al

en�1 þ en

2
þ 1

2
Al

en þ enþ1

2
¼ 1

2
jn þ 1

2
jn;
or, formally introducing the variable un, as
M �

un � un�1=2

s=2
þ Al

en�1 þ en

2
¼ jn;

M �

unþ1=2 � un

s=2
þ Al

en þ enþ1

2
¼ jn.

ð3:16Þ
Writing the first half-step update here for the next time level (i.e. replacing n with n + 1) we have
M �

unþ1 � unþ1=2

s=2
þ Al

en þ enþ1

2
¼ jnþ1;
which, together with (3.15) and (3.16) leads to the following one-step formulation of the LLC scheme:
M �

unþ1=2 � un

s=2
þ Al

en þ enþ1

2
¼ jn;

enþ1 � en

s
¼ unþ1=2;

M �

unþ1 � unþ1=2

s=2
þ Al

en þ enþ1

2
¼ jnþ1.

ð3:17Þ
In this form the sequence of computations for the scheme is not immediately clear and we rewrite it as
M � þ
s2

4
Al

� �
enþ1 ¼ s2

2
jn þ M � �

s2

4
Al

� �
en þ sM �u

n;

M �u
nþ1 ¼ s

2
jnþ1 � s

4
Alðen þ enþ1Þ þM �

enþ1 � en

s
.

The one-step formulations for the leap frog and the Gautschi scheme can be obtained along the same lines (see
also [17]):
One-step leap frog:

M �
unþ1=2�un

s=2
þ Alen ¼ jn;

enþ1�en

s ¼ unþ1=2;

M �
unþ1�unþ1=2

s=2
þ Alenþ1 ¼ jnþ1.

8>><
>>:
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One-step Gautschi:

unþ1=2�un

s=2
¼ wðs2~A�;lÞð�~A�;lyn þ f nÞ;

ynþ1�yn

s ¼ unþ1=2;
unþ1�unþ1=2

s=2
¼ wðs2~A�;lÞð�~A�;lynþ1 þ f nþ1Þ.

8><
>:
4. Analysis of the Gautschi–Krylov scheme

4.1. Krylov subspace approximation error

Theorem 4.1.1. Consider the homogeneous ODE system y00 + Ay = 0. Then, the solution of the Gautschi–Krylov

scheme has the form:
ynþ1 ¼ �yn�1 þ 2 cosðsA1=2Þyn þ
Z s

0

A�1=2 sinððs� sÞA1=2Þ~gðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:dn; Krylov error

;

~gðsÞ ¼ �bhmþ1;mvmþ1eT
mwðs2H mÞe1;

ð4:1Þ
where s is the step size, m is the Krylov dimension, b = iAyni, hm+1,m is the (m + 1, m) entry of the matrix �Hm. The

matrices �H m, Hm, and the vector vm+1 are defined in (3.9), (3.10), e1 and em are, respectively, the first and the last

canonical basis vectors in Rm, and w is given by (3.8).

For the exact Gautschi scheme (where the matrix function evaluations are done exactly) relation (4.1) holds

with dn ” 0.

Proof. The proof (inspired by the analysis given in Section 4 of [36]) consists of showing that the solution of
the Gautschi–Krylov scheme is the exact solution of a perturbed (inhomogeneous) ODE system.

Without loss of generality, we shift for convenience the time variable such that tn = 0, tn+1 = t and the
Gautschi scheme can be written as
yðtÞ � 2yð0Þ þ yð�tÞ ¼ �t2wðt2AÞAyð0Þ.
Substituting here function w as it is defined in (3.8) leads to relation (4.1) with dn ” 0 which thus indeed holds
for the exact Gautschi scheme. In the Gautschi–Krylov scheme the right-hand side is computed approximately
with Arnoldi or Lanczos process as
�t2wðt2AÞAyð0Þ ¼ �bt2wðt2AÞV me1 � �bt2V mwðt2H mÞe1;
where the matrix Vm is defined in (3.9), (3.10). The Gautschi–Krylov scheme can thus be written as
yðtÞ � 2yð0Þ þ yð�tÞ ¼ �bt2V mwðt2HmÞe1. ð4:2Þ
Denote ( Æ ) 0 = d( Æ )/dt. Since
ðt2wðt2HmÞÞ00 ¼ ð2H�1
m � 2 cosðtH 1=2

m ÞH�1
m Þ
00 ¼ 2 cosðtH 1=2

m Þ;

differentiating equality (4.2) twice with respect to t yields
½yðtÞ þ yð�tÞ�00 ¼ �2bV m cosðtH 1=2
m Þe1.
We now use the Arnoldi relation (3.9) rewritten as
AV m ¼ V mH m þ hmþ1;mvmþ1eT
m ð4:3Þ
and write
�2bV m cosðtH 1=2
m Þe1 ¼ �2bV mH mH�1

m cosðtH 1=2
m Þe1 ¼ �2bðAV m � hmþ1;mvmþ1eT

mÞH�1
m cosðtH 1=2

m Þe1;
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so that
½yðtÞ þ yð�tÞ�00 ¼ �2bðAV m � hmþ1;mvmþ1eT
mÞH�1

m cosðtH 1=2
m Þe1. ð4:4Þ
On the other hand, the right-hand side of (4.2) can be transformed as
�bt2V mwðt2H mÞe1 ¼ �2bV mðI � cosðtH 1=2
m ÞÞH�1

m e1 ¼ �2bV mH�1
m e1 þ 2bV m cosðtH 1=2

m ÞH�1
m e1. ð4:5Þ
Here the term V mH�1
m reads
V mH�1
m ¼ A�1V m þ hmþ1;mA�1vmþ1eT

mH�1
m ;
this follows from the Arnoldi relation (4.3). Substituting the last expression into (4.5) we get the following rela-
tion for the right-hand side of the Gautschi–Krylov scheme (4.2):
�2bA�1V me1 � 2bhmþ1;mA�1vmþ1eT
mH�1

m e1 þ 2bV m cosðtH 1=2
m ÞH�1

m e1.
Note that since the starting vector of the Arnoldi process is Ay(0) = bv1 (see Fig. 1 and recall that y(0) = yn),
for the first term holds:
�2bA�1V me1 ¼ �2bA�1v1 ¼ �2A�1Ayð0Þ ¼ �2yð0Þ

and the Gautschi–Krylov scheme thus reads (cf. (4.2))
yðtÞ � 2yð0Þ þ yð�tÞ ¼ �2yð0Þ � 2bhmþ1;mA�1vmþ1eT
mH�1

m e1 þ 2bV m cosðtH 1=2
m ÞH�1

m e1.
Here multiplication of both sides with A results in
AðyðtÞ þ yð�tÞÞ ¼ �2bhmþ1;mvmþ1eT
mH�1

m e1 þ 2bAV m cosðtH 1=2
m ÞH�1

m e1
or, taking into account that cosðtH 1=2
m ÞH�1

m ¼ H�1
m cosðtH 1=2

m Þ,
�2bAV mH�1
m cosðtH 1=2

m Þe1 ¼ �AðyðtÞ þ yð�tÞÞ � 2bhmþ1;mvmþ1eT
mH�1

m e1.
Replacing the first term of the right-hand side in (4.4) by the right-hand side of the last relation, we obtain
½yðtÞ þ yð�tÞ�00 ¼ �AðyðtÞ þ yð�tÞÞ � 2bhmþ1;mvmþ1eT
mH�1

m e1 þ 2bhmþ1;mvmþ1eT
mH�1

m cosðtH 1=2
m Þe1;
and, using (3.8),
½yðtÞ þ yð�tÞ�00 ¼ �AðyðtÞ þ yð�tÞÞ � bhmþ1;mvmþ1eT
mwðt2HmÞe1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:~gðtÞ

. ð4:6Þ
We now can get an analytic expression for u(t) ” y(t) + y(�t) by solving the following initial-value problem:
u00 ¼ �Auþ ~gðtÞ; uð0Þ ¼ 2yð0Þ; u0ð0Þ ¼ 0; ð4:7Þ

where the initial condition u 0(0) = 0 holds because function u(t) is even. Applying a variation-of-constants
formula to this initial-value problem gives
uðtÞ ¼ cosðtA1=2Þuð0Þ þ A�1=2 sinðtA1=2Þu0ð0Þ þ
Z t

0

A�1=2 sinððt � sÞA1=2~gðsÞds;

yðtÞ þ yð�tÞ ¼ 2 cosðtA1=2Þyð0Þ þ
Z t

0

A�1=2 sinððt � sÞA1=2~gðsÞds;
which, after changing the time variable back (so that y(0) = yn, y(±t) = yn±1) yields the required relation
(4.1). h
4.2. Stopping criterion for the Arnoldi process

The proposed stopping criterion for the Arnoldi process (cf. (3.12)) can be shown to be a controller of the
Krylov subspace error specified by (4.1). To see this, we assume that one time step is done with both the Gaut-
schi–Krylov and the exact Gautschi schemes and rewrite (4.1) as
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ynþ1
ðmÞ ¼ �yn�1 þ 2 cosðsA1=2Þyn þ dn

ðmÞ;

ynþ1
ex ¼ �yn�1 þ 2 cosðsA1=2Þyn.
where m is the Krylov subspace dimension, ynþ1
ðmÞ and ynþ1

ex are, respectively, solutions of the Gautschi–Krylov
and the exact Gautschi schemes and the Krylov subspace error dn

ðmÞ is given by (4.1):
dn
ðmÞ ¼ �bhmþ1;m

Z s

0

A�1=2 sinððs� sÞA1=2Þvmþ1eT
mwðs2H mÞe1 ds. ð4:8Þ
This expression cannot be readily used in practice for the evaluation of dn
ðmÞ due to the presence of the term

A�1/2sin((s � s)A1/2)vm+1. Computation of this matrix–vector product with the large matrix A is too expensive
and an approximation should be used. This can be done in different ways. For example, one might take several
first terms of the following series [10] as an approximation:
A�1=2 sinððs� sÞA1=2Þ ¼ ðs� sÞI � 1

3!
ðs� sÞ3Aþ 1

5!
ðs� sÞ3A2 � � � � ð4:9Þ
Note that substituting this relation in (4.8) we could obtain another, more detailed expression for the Krylov
subspace error dn

ðmÞ (for a similar analysis see Lemma 4.1 in [36]). Instead of (4.9) one might also use some
other approximations based, e.g., on Chebyshev polynomials. A more natural and efficient way for estimating
the Krylov subspace error is to use the same continued Arnoldi process to get a reference solution (for a dif-
ferent time integration scheme, this was proposed in [36]). More specifically, assume that, in addition to the m

steps of the Arnoldi process, another j steps of the process are done. Then
A�1=2 sinððs� sÞA1=2Þvmþ1 ¼ A�1=2 sinððs� sÞA1=2ÞV mþje
ðmþjÞ
mþ1 � V mþjH

�1=2
mþj sinððs� sÞH 1=2

mþjÞe
ðmþjÞ
mþ1 ; ð4:10Þ
where eðmþjÞ
mþ1 is the (m + 1)th canonical basis vector in Rmþj. This approximation is accurate if jhm+j+1,m+jj is

small enough (see (4.3) with m replaced by m + j). Since hm+j+1,m+j � 0 implies dn
ðmþjÞ � 0, the solution

ynþ1
ðmþjÞ of the Gautschi–Krylov scheme after m + j steps is then also accurate:
ynþ1
ðmþjÞ � ynþ1

ex .
Hence, the value of dn
ðmÞ with approximation (4.10) can be estimated as
dn
ðmÞ ¼ ynþ1

ðmÞ � ynþ1
ex � ynþ1

ðmÞ � ynþ1
ðmþjÞ.
In the proposed stopping criterion of the Arnoldi process (cf. (3.12)), the difference ynþ1
ðmÞ � ynþ1

ðmþjÞ is evaluated in
a special relative norm suitable for the time stepping process. The choice j = 1 (also made in [36]) is appropri-
ate since in most cases the Arnoldi process for matrix function evaluations exhibits a superlinear convergence
[16,36].
4.3. Stability of the Gautschi–Krylov scheme

The original Gautschi scheme (where the matrix function evaluations are performed exactly) is exact for the
linear ODE system y00 + Ay = 0 and hence is trivially stable. To show stability of the Gautschi–Krylov scheme,
we follow approach of [18] and consider perturbations en � yn � yn

ex with respect to the solution yn
ex of the

exact Gautschi scheme. Theorem 4.1.1 states that
ynþ1
ex ¼ �yn�1

ex þ 2 cosðsA1=2Þyn
ex; or

ynþ1
ex

yn
ex

" #
¼ 2 cosðsA1=2Þ �I

I 0

" #
yn

ex

yn�1
ex

� 	
.

ð4:11Þ
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Subtracting this relation from (4.1) we arrive at
enþ1 ¼ �en�1 þ 2 cosðsA1=2Þen þ dn; or

enþ1

en

� 	
¼ 2 cosðsA1=2Þ �I

I 0

" #
en

en�1

� 	
þ

dn

0

� 	
.

For dn ” 0 this recursion coincides with the exact solution recursion (4.11) and thus is stable if and only if the
ODE system to be solved is stable. One may understand stability in different ways [30,13], for instance, we may
require that
kGnk 6 K; for n P 0; ns 6 T ; G ¼ 2 cosðsA1=2Þ �I

I 0

" #
; ð4:12Þ
where K does not depend on s and T is the final time, for some operator norm i Æ i. We now assume that the
exact Gautschi scheme is stable in this sense and thus (4.12) holds true.

Stability of the Gautschi–Krylov scheme follows immediately as it does for perturbed (inhomogeneous) dif-
ference schemes (see e.g. [30, Chapter 4] or [13, Section 14]). Although the Krylov approximation error dn can
formally be made arbitrarily small, the Gautschi–Krylov scheme remains stable even if we allow a linear
growth of the norm of dn with respect to the time step s:
dn

0

����
���� 6 Cs;
with C independent on s. Denoting
En ¼
en

en�1

� 	
; d̂n ¼

dn

dn�1

� 	
;

one can obtain a standard expression for two-level schemes
En ¼ GnE0 þ Gn�1d̂0 þ Gn�2d̂1 þ � � � þ d̂n�1;
from which the stability estimate follows:
kEnk 6 kGnkkE0k þ kGn�1kn max
06i6n�1

kd̂ik 6 KkE0k þ KnCs 6 KkE0k þ KCT .
5. Dispersion analysis

For PDEs of the wave type dispersion analysis is an important tool to understand the error behavior of the
scheme.

In this section we analyze and compare, for the edge finite element spatial discretization on a uniform mesh,
the numerical dispersion error for the three schemes introduced in Section 3. For the analysis, we make the
following two assumptions:

(1) Eq. (2.12) is given in an infinite source free (J ” 0) region with periodic boundary conditions:
�rottE þr� ðl�1
r r� EÞ ¼ 0. ð5:1Þ
(2) lr and �r are constant scalars.

A vector field
Eðx; y; z; tÞ ¼ E0 expðiðk � x� xtÞÞ; where i ¼
ffiffiffiffiffiffiffi
�1
p

; ð5:2Þ

is a solution of (5.1) if the dispersion relation
x2 ¼ c2
r k2 ð5:3Þ
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holds, where k = (k1, k2, k3) is the wave vector, x = (x, y, z), k ¼ kkk2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2 þ k2

3

q
is the wave number,

cr ¼ 1=ð ffiffiffiffiffiffiffiffi�rlr
p Þ is the scaled speed of light, and x is the angular frequency.

We consider the finite element discretization of (5.1) on a uniform parallelepiped mesh with elements of size
h · h · h, see Fig. 2. The angles \DAB and \CAB are called deformation angles.

Remark 5.0.1. To avoid cumbersome expressions, we present many of the formulas for the cubic case
\DAB = \CAB = 90�. If a formula is valid only for the cubic elements, this is explicitly reported. However,
the whole analysis is valid for the general case and the resulting plots of the dispersion errors are given also for
the deformed mesh. Part of computations for the dispersion analysis were done in Maple.

On this regular mesh the finite element matrices (2.17) take the form M� = �rhM and Al ¼ 1
hlr

A, where the

matrices M and A do not depend on the element size h. This results in the following system of ODEs:
Me00 þ c2
r

h2
Ae ¼ 0. ð5:4Þ
The time exact dispersion equation is
�x2Meþ c2
r

h2
Ae ¼ 0. ð5:5Þ
We end up with an eigenvalue problem with large sparse matrices given in (5.4). Since we are working on a
uniform mesh, it is possible to reduce the problem size as follows:

The expansion coefficients of the finite element approximation are ejðtÞ ¼
R

edgej Eðx; tÞ � tj ds. If the exact
solution of (5.1) is given by (5.2) then for any two parallel edges p and j the expansion coefficients satisfy
enþq
p ¼ expðiðk � Dpj � xqsÞÞen

j ; ð5:6Þ
where the superscript indicates the time level, the subscript indicates the number of the edge to which the coef-
ficient belongs, and Dpj is a vector from the midpoint of edge p to the midpoint of edge j.

5.1. Gautschi method

We analyze the Gautschi scheme under the assumption that the action of the matrix function (3.8) on a
given vector can be computed exactly (or very accurately) so that the scheme is exact in time. This assumption
is realistic (see Section 6.3). Hence, we consider the time-accurate dispersion relation (5.5) for the system (5.4),
which gives us the following generalized eigenvalue problem:
�x2Men þ c2
r

h2
Aen ¼ 0. ð5:7Þ
Denoting u(x) = �x2 and g ¼ c2
r

h2, we have
uðxÞMen þ gAen ¼ 0. ð5:8Þ
D

BA

C

Fig. 2. Deformed element with deformation angles \CAB and \DAB. The angle \DAC = 90�.
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Using the relations (5.6) it is not difficult to see that on a uniform grid Eq. (5.8) are the same (up to a constant
~Cpj) for parallel edges, i.e. for any two parallel edges p and j holds:
Fig.
uðxÞMðap,:Þen þ gAðap,:Þen ¼ ~CpjðuðxÞMðaj,:Þen þ gAðaj,:ÞenÞ ¼ 0;
where M(aj, :) denotes ajth row of matrix M, and similarly for A. Therefore it is sufficient to consider the equa-
tions corresponding to any three edges a1, a2, a3 among which there are no parallel edges (see Fig. 3).

Let
X ðtÞ ¼
Z

a1

Eðx; tÞ � t da; Y ðtÞ ¼
Z

a2

Eðx; tÞ � t da; ZðtÞ ¼
Z

a3

Eðx; tÞ � t da;
then using (5.6) all the other degrees of freedom (coefficients) in the whole mesh can be expressed in terms of
X, Y, Z.

The corresponding equation of edge a1 is
uðxÞMða1,:Þen þ gAða1,:Þen ¼ 0. ð5:9Þ
The matrices M and A have a sparse structure because in (5.9) coefficients only of those basis functions are
present which have nonempty common support with the basis function corresponding to the edge a1. On a
cubic mesh we have
Mða1,:Þen ¼ 1

36
ð1; 4; 1; 4; 16; 4; 1; 4; 1Þ � ð~e1;~e2;~e3;~e14;~e15;~e16;~e27;~e28;~e29ÞT;

Aða1,:Þen ¼ 1

6
ð�2;�2;�2; 1;�1;�1; 1; 1;�1; 4;�4; 1;�1;�2; 16;�2;

4;�4;�4; 4;�1; 1;�4; 4;�1; 1;�2;�2;�2; 1;�1;�1; 1Þ � ð~e1;~e2;~e3; . . . ;~e32;~e33ÞT . ð5:10Þ
Here the tilde sign is used to distinguish the local index with the global index, for example ~e15 ¼ ea1
, ~e19 ¼ ea2

.
Writing the relations similar to (5.9) for edges a2 and a3 and using (5.6), we obtain a homogeneous system of
equations
1a

a3

a2

2

3

7
9

13

16

22

24

26

27

1

4

8

10

5

11

18

14

23

30
25

32
29

28
33

31

6

12

19

15
17

20

21

D

A

B

C

3. Three nonparallel edges a1, a2, a3 and the degrees of freedom (with a local numbering) that appear in Eq. (5.7) for edge a1.
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ðuðxÞF þ gGÞ
X

Y

Z

0
B@

1
CA ¼ 0. ð5:11Þ
On both cubic and deformed meshes the numerical dispersion relation of the Gautschi scheme is
detðuðxÞF þ gGÞ ¼ 0; or

det �x2F þ c2
r

h2
G

� �
¼ 0;

ð5:12Þ
where the 3 · 3 matrices F and G depend on the wave vector k and the mesh size (entries of F and G are spec-
ified for the cubic mesh in Appendix B). One of the solutions of the dispersion relation is x = 0, which does
not represent anything physical. The other solutions of (5.12) satisfy
ðxhhÞ2 ¼ 18
4� cos n3 cos n2 � cos n1 cos n2 cos n3 � cos n3 cos n1 � cos n1 cos n2

ð2þ cos n1Þð2þ cos n2Þð2þ cos n3Þ
c2

r ; ð5:13Þ
where ni = hki, i = 1, 2, 3, and xh denotes the numerical angular frequency. The exact phase velocity is given
by cr = x/k and the numerical phase velocity is v = xh/k. In Fig. 4 a plot of the phase velocity error is given for
cubic elements with k3 = 0. For all the numerical experiments throughout this section we assume that
�r = lr = 1.

Under the assumption jkhj 	 1 the Taylor expansion of (5.13) shows
xh ¼ crk 1þ 1

24

k4
1 þ k4

2 þ k4
3

k2
h2 þ higher order terms

� �
;

which means that the dispersion relation for the Gautschi scheme is satisfied up to second order.

5.2. Leap frog scheme

Applying relation (5.6) to the leap frog scheme (3.1), we have
enþ1 � 2en þ en�1

s2
¼ expð�ixsÞen � 2en þ expðixsÞen

s2
¼ 2ðcosðxsÞ � 1Þ

s2
en. ð5:14Þ
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Fig. 4. The phase velocity error of the Gautschi scheme for cubic elements.
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Then the generalized eigenvalue problem of the leap frog scheme is
2ðcosðxsÞ � 1Þ
s2

Men þ c2
r

h2
Aen ¼ 0. ð5:15Þ
Introducing uðxÞ ¼ 2ðcosðxsÞ�1Þ
s2 and g ¼ c2

r

h2 in (5.8) we obtain the dispersion equation for the leap frog scheme
det
2ðcosðxsÞ � 1Þ

s2
F þ c2

r

h2
G

� �
¼ 0; ð5:16Þ
with the 3 · 3 matrices F and G defined as in (5.12). There are 3 roots, one is zero which is non physical. The
solution of (5.16) satisfies (on a cubic mesh)
cosðxsÞ ¼ 1� 2
v1ðs; h; kÞ
v2ðs; h; kÞ

; ð5:17Þ
where
v1ðs; h; kÞ ¼ 9c2
r s

2ð4� cos n1 cos n2 cos n3 � cos n1 cos n2 � cos n2 cos n3 � cos n3 cos n1Þ;
v2ðs; h; kÞ ¼ 2h2ð2þ cos n1Þð2þ cos n2Þð2þ cos n3Þ;
and ni = hki, i = 1, 2, 3.
According to the exact dispersion relation (5.3), we would like to have only real solutions x of (5.17).

Otherwise, as it is clear from (5.2), the imaginary part of x will contribute to dissipation of the solution (damp-
ing if Im(x) < 0 or amplification if Im(x) > 0, see e.g. [40]). The value of x is real if and only if
1� 2
v1ðs; h; kÞ
v2ðs; h; kÞ










 6 1;
or, equivalently,
crs
h
6

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ cos n1Þð2þ cos n2Þð2þ cos n3Þ

4� cos n1 cos n2 cos n3 � cos n1 cos n2 � cos n2 cos n3 � cos n3 cos n1

s
. ð5:18Þ
Since it is always true that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2þ cos n1Þð2þ cos n2Þð2þ cos n3Þ

4� cos n1 cos n2 cos n3 � cos n1 cos n2 � cos n2 cos n3 � cos n3 cos n1

s
P 1;
for the inequality (5.18) to hold true it is sufficient to require that
crs
h
6

1

3
; ð5:19Þ
which gives stability condition on the uniform mesh. A more general stability condition is given in Appendix
A.

Under the assumption jkhj 	 1 the Taylor expansion of (5.17) shows
xs ¼ crk 1þ 1

24
c2

r k2s2 þ 1

24

k4
1 þ k4

2 þ k4
3

k2
h2 þ higher order terms

� �
;

where xs is the numerical angular frequency. In order to have spatial and temporal error terms of the same
order, we should take s = O(h). This is a clear disadvantage of leap frog compared to Gautschi.

In Figs. 5–7, the absolute error of the angular frequency for the leap frog scheme is shown in comparison
with the Gautschi scheme for different values of the time step s and deformation angles h (\DAC =
\BAC = h, see Fig. 2). Here, for simplicity, we assume k3 = 0. Note that in all figures the plots of the leap
frog scheme become increasingly similar (as s decreases) to the plot of the time-exact Gautschi scheme. We
observe that reduction of the time step beyond 0.002 does not give more accurate results because the spatial
error is dominant.
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Fig. 5. Absolute value of the angular frequency errors for the leap frog scheme with different time steps and for the Gautschi scheme, mesh
size h = 1/20, deformation angle h = p/2.
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5.3. LLC scheme

The generalized eigenvalue problem for the LLC scheme (3.13) is
2ðcosðxsÞ � 1Þ
s2

Men þ ðcosðxsÞ þ 1Þ
2

c2
r

h2
Aen ¼ 0.
Introducing uðxÞ ¼ 2ðcosðxsÞ�1Þ
s2 and g ¼ cosðxsÞþ1

2

c2
r

h2 in (5.8) we obtain the dispersion equation for the LLC
scheme
det
2ðcosðxsÞ � 1Þ

s2
F þ ðcosðxsÞ þ 1Þ

2

c2
r

h2
G

� �
¼ 0; ð5:20Þ



1 2 3 4
1

2

3

4

0.02

0.04

0.04

0.06

0.08

τ=0.1

k 2

k
1

1 2 3 4
1

2

3

4

0.005

0.01

0.01
0.015

0.02

τ=0.025

k 2

k
1

1 2 3 4
1

2

3

4

0.005

0.01

0.01

0.015
0.02

τ=0.01

k 2

k
1

1 2 3 4
1

2

3

4

0.005

0.01

0.01

0.015

0.02

τ=0.002

k 2

k
1

1 2 3 4
1

2

3

4

0.005

0.01

0.01

0.015

0.02

τ=0.001

k 2

k
1

1 2 3 4
1

2

3

4

0.005

0.01

0.01

0.015

0.02

Gautschi scheme

k 2

k
1

Fig. 6. Absolute value of the angular frequency errors for the leap frog scheme with different time steps and for the Gautschi scheme, mesh
size h = 1/20, deformation angle h = p/3.
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where the 3 · 3 matrices F and G are given as in (5.12). There are 3 roots, one is zero. The solution of (5.20)
satisfies (on a cubic mesh)
cosðxsÞ ¼ v2ðs; h; kÞ � v1ðs; h; kÞ
v2ðs; h; kÞ þ v1ðs; h; kÞ

; ð5:21Þ
where
v1ðs; h; kÞ ¼ 9c2
r s

2ð4� cos n1 cos n2 cos n3 � cos n1 cos n2 � cos n2 cos n3 � cos n3 cos n1Þ;
v2ðs; h; kÞ ¼ 2h2ð2þ cos n1Þð2þ cos n2Þð2þ cos n3Þ;
and ni = hki, i = 1, 2, 3.
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Fig. 7. Absolute value of the angular frequency errors for the leap frog scheme with different time steps and for the Gautschi scheme, mesh
size h = 1/20, deformation angle h = p/4.
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Under the assumption jkhj 	 1 the Taylor expansion of (5.21) shows
xs ¼ crk 1� 1

12
c2

r k2s2 þ 1

24

k4
1 þ k4

2 þ k4
3

k2
h2 þOðh4Þ þOðs4Þ þOðs2h2Þ þ higher order terms

� �
; ð5:22Þ
where xs denotes the numerical angular frequency. In order to make the spatial and temporal error terms of
the same order, we should take s = O(h). We note that the dispersion error of the LLC scheme becomes fourth
order accurate if we choose
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2c2
r

k4
1 þ k4

2 þ k4
3

k4

s
h; ð5:23Þ
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Fig. 8. Absolute value of the angular frequency errors for the LLC scheme with different time steps and for the Gautschi scheme, mesh size
h = 1/20, deformation angle h = p/2. The plot for the time step s = 0.025 reflects the increase in the error order (cf. (5.23) with k3 = 0 and
k1 � k2).
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which can be called an optimum time step. We note that (5.22), (5.23) are only valid on a cubic
mesh.

In Figs. 8–10, the absolute error of the angular frequency for the LLC scheme is shown in comparison with
the time-accurate Gautschi scheme for different values of time step s and deformation angles h
(\DAC = \BAC = h, see Fig. 2). Here again we assume for simplicity k3 = 0.

For the LLC scheme we observe a similar convergence behavior as for the leap frog scheme. Note
that the plot for the step size s = 0.025 in Fig. 8 differs significantly from the other plots in the
figure due to the increase in the error order observed in (5.22) (cf. (5.23) with k3 = 0 and
k1 � k2).
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Fig. 9. Absolute value of the angular frequency errors for the LLC scheme with different time steps and for the Gautschi scheme, mesh size
h = 1/20, deformation angle h = p/3.
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6. Numerical experiments

6.1. Test problem 1

This test problem is obtained by choosing an arbitrary vector field function Ean(x, y, z, t) satisfying the
boundary conditions, projecting it onto the finite element subspace and substituting the projection into the
semidiscrete system (2.16). The source function j(t) is then chosen such that the finite element projection of
Ean is the exact solution of (2.16). Note that it is important to use the exact solution of the semidiscrete system
because the difference of this solution with the computed numerical solution represents then solely the time
error (without the spatial discretization error).
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Fig. 10. Absolute value of the angular frequency errors for the LLC scheme with different time steps and for the Gautschi scheme, mesh
size h = 1/20, deformation angle h = p/4.
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More specifically, we consider the dimensionless Maxwell equations (2.12) in the domain
X = [0, 1] · [0, 1] · [0, 1] and we take
Eanðx; y; z; tÞ ¼ vðtÞ�Eðx; y; zÞ.
If �e is the finite element projection of the field �E then
eanðtÞ ¼ vðtÞ�e
is the exact solution of the semidiscrete ODE system (2.16) with
jðtÞ ¼ ðv00M � þ vAlÞ�e.



676 M.A. Botchev et al. / Journal of Computational Physics 216 (2006) 654–686
In our experiments we took
�r ¼ 1; lr ¼ 1.

vðtÞ ¼
XNx

i¼1

cos xit; �Eðx; y; zÞ ¼
sin py sin pz

sin px sin pz

sin px sin py

2
64

3
75. ð6:1Þ
where the values of xi are reported later separately for each of the test runs. This test problem is well suited for
studying the evolution of the time error, since the exact solution is readily computable for any moment of time t.

6.2. Test problem 2

This test problem differs from the previous one only by the choice of the exact (reference) solution. The
exact solution is obtained by any of the available schemes run with an extremely small time step size s. With
this s all schemes produce numerical solutions which are practically exact in time but with the same spatial
error as the numerical solutions obtained for realistically large s. Such a testing approach is common in
numerical time integration of space-discretized PDEs (see e.g. [35]). This test problem is convenient when
one wants to know the error at the final time.

6.3. The Krylov subspace dimension and the time error

Here we investigate how the choice of the Krylov subspace dimension in the Gautschi scheme influences its
time integration error. We are interested in the evolution of the error in time and therefore use Test problem 1.
The frequencies xi of the inhomogeneous term j(t) (cf. (6.1)) are chosen as
x1 ¼ 1; x2 ¼ 10.
The results are presented in Fig. 11. Here, the time error evolution of the Gautschi scheme is shown for dif-
ferent fixed Krylov subspace dimensions m and for the adaptive choice of m based on the condition (3.12). The
time integration was done up to the final time T ¼ 6 2p

maxifxig corresponding to the 6 periods of time. The shown

error is the Euclidean norm of the difference between the coefficients of the finite element basis expansions of
the numerical and the exact solutions.

Inspection of the plots in Fig. 11 shows that there is a certain value of m ¼ ~m such that increasing the Kry-
lov subspace dimension beyond ~m does not lead to any improvement in time accuracy. In other words, even if
we compute the action of the matrix function on vectors very accurately the error does not decrease. Thus, for
m P ~m we have a scheme where the error caused by the Krylov subspace approximation is negligible as com-
pared to the time error of the exact Gautschi scheme. The adaptive choice of m is able to catch the value of ~m
very accurately: for example, for the upper plot (14 · 14 · 14 mesh) we can see that ~m � 4 whereas the adap-
tive choice gave values m between 3 and 5.

The typical dimensions of the Krylov subspace, observed in practice, depend on the time step size used. For
the step sizes up to a factor two larger than the CFL number (which is the maximal possible step size of the
explicit leap frog scheme) the Krylov dimension is usually 2. For larger realistic time step sizes values of m up
to 12 can be observed. The values of m mildly grow as the spatial mesh gets finer.

6.4. Computational work

We recall that on the uniform meshes the computational work per time step in the Gautschi scheme is a
factor m + 1 (with m being the Krylov subspace dimension) more than for the leap frog scheme.

On uniform meshes the computational work of the LLC scheme is difficult to compare explicitly with those
of the leap frog and Gautschi schemes. This is because on uniform meshes the sparse LU factorization of the
matrix M � þ s2

4
Al in the LLC scheme is more expensive than that of M�, since the matrix M� is sparser due to

orthogonality of some basis functions on the cubic elements. This makes the LLC scheme very expensive on
finer meshes as compared to the other two schemes. For this reason the results for the LLC scheme in this
section are shown only for a coarser 10 · 10 · 10 mesh.
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On the uniform meshes let us denote the computational work required for the LU factorizations of the
matrices M � þ s2

4
Al and M� as lu_fac_LLC and lu_fac_lf, respectively. The computational work for one

matrix–vector multiplication with the matrices M � � s2

4
Al and Al involved in the LLC and leap frog schemes

is defined as mat_vec_LLC and mat_vec_lf, respectively. The computational work required for the LU solver
for the schemes LLC and leap frog is denoted as lu_sol_LLC and lu_sol_lf, respectively.

In contrast to the situation on the uniform meshes, the matrices M� and M � þ s2

4
Al have the same sparsity

structure on unstructured meshes, hence require the same computational work for the LU factorization.
Although the computational work per time step in the Gautschi scheme is larger than in the LLC or the leap
frog scheme, the Gautschi scheme appears to be more efficient (see results of Section 6.5.2). Let us define a
relative work required for one LU factorization as lu_fac, one matrix–vector multiplication as mat_vec and
one LU solver as lu_sol. It is clear that per time step the LLC and the leap frog schemes require mat_vec +
lu_sol and the Gautschi scheme requires (m + 1)(mat_vec + lu_sol) operations.

If we denote the required computational work per time step for the cases described above as
Qlf ¼ mat vec lf þ lu sol lf ;

QLLC ¼ mat vec LLC þ lu sol LLC;

Q ¼ mat vecþ lu sol;
then the overall computational work for all the schemes on the uniform and unstructured meshes is given in
Table 1, where T is the final time and s is the time step size.



Table 1
Computational work for the three schemes

Uniform mesh Unstructured mesh

Gautschi T
s ðmþ 1Þ � Qlf þ lu fac lf T

s ðmþ 1Þ � Qþ lu fac

LLC T
s � QLLC þ lu fac LLC T

s � Qþ lu fac

Leap frog T
s � Qlf þ lu fac lf T

s � Qþ lu fac
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On finer uniform or unstructured meshes the LU factorizations may require too much computational
efforts. In this case one could use an iterative solver for the three schemes. In the context of the Arnoldi pro-
cess used in the Gautschi scheme this would mean that the action of M�1

� is computed by an inner iterative
solver. Note that the matrix M � þ s2

4
Al appearing in the LLC scheme usually requires more iterations of an

iterative solver than the well-conditioned mass matrix M� [9]. Performance of the iterative solvers in all the
schemes can be improved by a suitable preconditioning (see [36] for preconditioning of the Krylov subspace
matrix function evaluations). On the other hand, the use of approximate implicit schemes [3] or stabilized
explicit schemes [39,34,35] might be a good option here, too.

6.5. Comparisons of the three schemes

We compare now the time stepping errors at the final time and the CPU times of the three schemes pre-
sented in Section 3. Since we are interested in time errors at the final time, we use Test problem 2. The pre-
sented error values are computed as
error ¼ y�n � y�n
exact

y�n
exact þ �C

����
����
1
; ð6:2Þ
where the division of the vectors is understood element-wise, y�n and y�n
exact are the numerical and the exact (ref-

erence) solutions at the final time T ¼ �ns ¼ 50, and �C is the machine epsilon.

6.5.1. Uniform cubic mesh

In the experiments presented in this section, a uniform cubic mesh was used. In the first test, the frequencies
xi of the source term j(t) were taken to be homogeneously distributed:
Nx ¼ 101; wi evenly distributed in ½1; 10�; i ¼ 1; . . . ; 101. ð6:3Þ

The results are presented in Fig. 12. We see that all the schemes clearly exhibit second order time accuracy.
The peculiar drop in the error-versus-s plot of the LLC scheme, is caused by the increase in the error order
observed in (5.22), (5.23).

The nonmonotonicity seen on the error-versus-CPU time plots of the Gautschi scheme are characteristic for
the scheme: smaller time step sizes result in reduction of the Krylov dimension m which makes the scheme
significantly cheaper. There is, thus, an optimal time step size for which the overall computational work is
minimal. As one can see in Fig. 12, the Gautschi and LLC schemes lose to the leap frog scheme in perfor-
mance. This is to be expected since we work on a uniform mesh in a domain with homogeneous �r and lr.

Because of different sparsity patterns of the matrices M � þ s2

4
Al and M� the plots versus the computational

work in Fig. 13 are presented only for the leap frog and the Gautschi schemes.
Very similar results were obtained for the case where
Nx ¼ 101; xi evenly distributed in ½1; 2�; i ¼ 1; . . . ; 100; x101 ¼ 10. ð6:4Þ

Here all the schemes yield errors which are approximately a factor 103 smaller than for the homogeneous dis-
tribution of xi (6.3). In this the case the error-versus-s dependence of the LLC scheme is monotone.

We now present the performance of the Gautschi scheme on a finer mesh 40 · 40 · 40 with higher, as com-
pared to (6.3) and (6.4), frequencies in the source term:
Nx ¼ 103; wi evenly distributed in ½1; 2�; i ¼ 1; . . . ; 100; ð6:5Þ
x101 ¼ 10; x102 ¼ 24; x103 ¼ 25.
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Fig. 12. Uniform mesh. Errors at the final time against the corresponding step sizes and the required CPU times for the homogeneously
distributed frequencies in the source term (cf. (6.3)).
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In Fig. 14 the errors at the final time are given against the corresponding step sizes and computational work.
For this mesh, the sparse LU factorization of the matrix M � þ s2

4
Al in the LLC scheme is prohibitively expen-

sive and the conjugate gradient iterative solver is used.
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Fig. 13. Uniform mesh. Errors at the final time against the corresponding computational work for homogeneously distributed frequencies
in the source term. The work is measured in the Qlf units (see Section 6.4).
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6.5.2. Unstructured tetrahedral mesh

In this example, Test problem 2 with the homogeneously distributed frequencies in the source term (cf.
(6.3)) is solved on a unstructured tetrahedral mesh generated by the Centaur mesh generator. In the mesh used
(see Fig. 15), the ratio between longest and shortest edge is about 17. Although the mesh is rather coarse, the
time step of the leap frog scheme is restricted for stability reasons to the relatively small time step 0.0155
(which is approximately a factor 2 smaller than the stability time step restriction of a uniform mesh with
roughly the same number of degrees of freedom).

The results of the experiment are given in Fig. 16. Note the irregular convergence pattern of the LLC
scheme which is apparently caused by effects of the MATLAB/UMFPACK sparse direct solver used in the
scheme (the accuracy of the solver is compromised to retain sparsity in the LU factors).

It is evident that to achieve the same accuracy both the explicit leap frog scheme and the implicit LLC
scheme require much smaller time steps than the Gautschi scheme and their computational times are bigger
than that of the Gautschi scheme.

In Fig. 17 we compare accuracies delivered by the schemes versus required computational work (see Section
6.4). It is clear from this figure that on the unstructured mesh the Gautschi scheme appears to be the most
efficient.

6.5.3. Exactness of the Gautschi scheme for the slowly varying inhomogeneous term

The Gautschi scheme is known to be exact for the constant inhomogeneous term j(t) [11,17]. To see whether
this is the case for our Krylov subspace implementation of the scheme, we take in these two tests (i) zero and
(ii) very small values of xi:
Fig. 15. A cut of the unstructured mesh used for the experiment.
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Fig. 16. Unstructured mesh. Errors at the final time against the corresponding step sizes and the required CPU times for the
homogeneously distributed frequencies in the source term (cf. (6.3)). Left plots: the error is measured as in (6.2). Right plots: the error is
measured as ky�n � y�n
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Fig. 17. Unstructured mesh. Errors at the final time against the corresponding computational work for homogeneously distributed
frequencies in the source term. The work is measured in the Q units (see Section 6.4).
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(i) Nx ¼ 1; x1 ¼ 0; ð6:6Þ
(ii) Nx ¼ 3; x1 ¼ 10�5; x2 ¼ 2:23� 10�5; x3 ¼ 8� 10�6. ð6:7Þ
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The results obtained on the uniform cubic mesh for zero values of xi are presented in Fig. 18. Similar, prac-
tically undistinguishable plots were obtained for the very small frequencies (6.7). Note the superconvergence
effects observed for the leap frog and the LLC schemes on the 10 · 10 · 10 mesh: the schemes are almost
fourth order accurate. The results clearly show that the Gautschi scheme with adaptive choice of the Krylov
subspace dimension is practically exact for these problems.

7. Conclusions and suggestions for future research

It is shown that the Gautschi cosine scheme can be efficiently implemented for edge finite element discret-
izations of the three-dimensional Maxwell equations. The implementation involves a sparse LU (or Cholesky)
factorization of the mass matrix which is also required for explicit time stepping schemes and in most cases can
be done efficiently. When the direct solution is not feasible the action of the inverse of the mass matrix could
also be computed by an iterative solver.

We also proposed a simple strategy for the adaptive choice of the Krylov dimension. This strategy proves to
be successful in our experiments, in particular, the error triggered by the Krylov subspace approximation
appears negligible to the time error. Moreover, the exactness of the Gautschi scheme for the constant inho-
mogeneous term was observed in practice for our Gautschi–Krylov implementation. A backward error anal-
ysis of the Krylov subspace error was done leading to an explicit formula for the error. This also provided an
insight for the stopping criterion used in the Arnoldi process. Furthermore, the stability of the new scheme was
proved.

Dispersion analysis presented in the paper revealed superior properties of the Gautschi scheme as compared
to the leap frog and the LLC scheme.
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The presented numerical experiments demonstrate that the Gautschi scheme is more efficient (in
terms of the achieved accuracy and the required computational work) than the implicit LLC scheme.
The Gautschi scheme is much more efficient than the explicit leap frog scheme and the LLC scheme (i)
on nonuniform meshes or (ii) when the inhomogeneous source term is a slowly varying function of
time.

A relevant future research topic would be an extension of the Gautschi–Krylov scheme to the Maxwell
equations with nonzero conductivity terms or absorbing boundary conditions. In both cases the weak formu-
lation (2.15) will contain a first order time derivative. A possible approach here would be to use splitting
methods.

It would also be interesting to see how the Gautschi–Krylov scheme performs with the recently developed
matrix function preconditioning technique [36].

The presented results indicate that the Gautschi–Krylov scheme is a promising tool for efficient time inte-
gration of the Maxwell equations.
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Appendix A. Stability of the leap frog scheme

To derive a stability condition for the leap frog scheme we consider the homogeneous case j(t) = 0:
M �e
nþ1 þ ðs2Al � 2M �Þen þM �e

n�1 ¼ 0; ðA:1Þ
or in its equivalent form
enþ1 þ ðs2M�1
� Al � 2IÞen þ en�1 ¼ 0. ðA:2Þ
In our analysis, we follow the standard approach based on diagonalizing the matrices involved in the scheme
(see e.g. [42]). Any solution of (A.2) can be written as
en ¼
X

m

cn
mam; ðA:3Þ
where am’s are the eigenvectors corresponding to the eigenvalues (km) of the following eigenvalue problem
M�1
� Alx ¼ kx. ðA:4Þ
We assume that matrices M� and Al are Hermitian, M� is positive definite and Al is positive semidefinite. This
is guaranteed by the finite element discretization provided that l and � have corresponding properties. The
eigenvalues of (A.4) are then nonnegative. Substitution of (A.3) into (A.2) yields
X

m

cnþ1
m am þ ðs2M�1

� Al � 2IÞ
X

m

cn
mam þ

X
m

cn�1
m am

¼
X

m

cnþ1
m am þ

X
m

cn
mðs2km � 2Þam þ

X
m

cn�1
m am ¼ 0. ðA:5Þ
which, due to the linear independence of the am’s, implies
cnþ1
m þ ðs2km � 2Þcn

m þ cn�1
m ¼ 0 for all m. ðA:6Þ
This recurrence is stable (i. e. jcn
mj 6 1) if and only if the roots m1,2 of its characteristic equation
m2 þ ðs2km � 2Þmþ 1 ¼ 0 ðA:7Þ

do not exceed one in absolute value. The solution of (A.7) is
m1;2 ¼ 1� s2

2
km 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� s2

2
kmÞ2 � 1

r
. ðA:8Þ
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A straightforward computation shows that the stability condition jm1,2j 6 1 is fulfilled if and only if
1� s2

2
km

� �2

� 1 6 0; ðA:9Þ
which, together with (A.8), necessarily means that jm1,2j = 1. The solutions of (A.9) satisfy
s2
6

4

km
; for all m; ðkm P 0Þ.
Then the stability condition for the leap frog scheme is
s2
6

4

kmax

;

where kmax is the maximum eigenvalue of the matrix M�1
� Al.

Appendix B. Dispersion relation matrices F and G

The matrices F and G in (5.12) on a cubic mesh with element size h · h · h are given as the matrix F is diag-
onal, with entries
F 11 ¼
1

9
cosðhk2Þ cosðhk3Þ þ

2

9
cosðk3hÞ þ 2

9
cosðk2hÞ þ 4

9
;

F 22 ¼
1

9
cosðhk1Þ cosðhk3Þ þ

2

9
cosðk3hÞ þ 2

9
cosðk1hÞ þ 4

9
;

F 33 ¼
1

9
cosðhk1Þ cosðhk2Þ þ

2

9
cosðk2hÞ þ 2

9
cosðk1hÞ þ 4

9
;

the matrix G is complex Hermitian with entries
G ¼
g11 g12 g13

�g12 g22 g23

�g13 �g23 g33

0
B@

1
CA;
where �g denotes the complex conjugate of g and
g11 ¼
8

3
� 2

3
cosðhðk2 � k3ÞÞ �

2

3
cosðhk2Þ �

2

3
cosðhk3Þ �

2

3
cosðhðk2 þ k3ÞÞ;

g12 ¼ �
2

3
þ 1

6
e�ihðk2þk3Þ � 1

6
e�ihð�k1þk2þk3Þ � 2

3
e�ihð�k1þk2Þ þ 2

3
e�ihk2 þ 1

6
e�ihð�k1þk3Þ � 1

6
e�ihk3

� 1

6
e�ihð�k1þk2�k3Þ þ 1

6
e�ihðk2�k3Þ þ 1

6
eihðk1þk3Þ � 1

6
eihk3 þ 2

3
eik1h;

g13 ¼ �
2

3
þ 1

6
e�ihðk2þk3Þ � 1

6
e�ihð�k1þk2þk3Þ þ 1

6
e�ihð�k1þk2Þ � 1

6
e�ihk2 � 2

3
e�ihð�k1þk3Þ

þ 2

3
e�ihk3 þ 1

6
eihðk1þk2Þ � 1

6
eihðk1þk2�k3Þ þ 1

6
eihðk2�k3Þ � 1

6
eihk2 þ 2

3
eik1h;

g22 ¼ �
2

3
cosðk1hÞ þ 8

3
� 2

3
cosðhð�k1 þ k3ÞÞ �

2

3
cosðhk3Þ �

2

3
cosðhðk1 þ k3ÞÞ;

g23 ¼ �
2

3
� 1

3
cosðk1hÞ þ 1

6
e�ihð�k1þk3Þ þ 2

3
e�ihk3 þ 1

6
eihðk1þk2Þ � 1

6
eihðk1þk2�k3Þ � 2

3
eihðk2�k3Þ

þ 2

3
eihk2 þ 1

6
eihð�k1þk2Þ � 1

6
eihð�k1þk2�k3Þ þ 1

6
e�ihðk1þk3Þ;

g33 ¼ �
2

3
cosðhðk1 þ k2ÞÞ þ

8

3
� 2

3
cosðk1hÞ � 2

3
cosðhk2Þ �

2

3
cosðhð�k1 þ k2ÞÞ.
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